If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+23x+6=0
a = 14; b = 23; c = +6;
Δ = b2-4ac
Δ = 232-4·14·6
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{193}}{2*14}=\frac{-23-\sqrt{193}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{193}}{2*14}=\frac{-23+\sqrt{193}}{28} $
| 9/5+3/5x=57/20+5/4x+3/4 | | F(x)=7.50-20,000 | | 6m=15m+0.2*30+10 | | 6m=15m | | -x/4+9/2=2/3x-1 | | a2+8a-45=7 | | 2u/7=32 | | 10x-40=6x+8 | | -1m=-4 | | 2a+3a-20=0 | | 4u+1=-7 | | 60=3w-2 | | 4x+20=6x+6 | | 4x+20=6x+30 | | X*2.5+x*1.2=27.7 | | 7v=72-v | | 13=3+20x-5x^2 | | 16+-5x=-11+8x | | 10-3n-13=8n+17-6n | | x+5+234=21 | | 234+5x=21 | | 0.8/0.2=x2/9 | | 3(x+15)=-5(x+15) | | 3(x+15)=-5(x+5) | | 40^2+x^2=20^2 | | -11(x+2)+248=27+23 | | 3(x+15)=-5(x+20) | | 2(x-6)-2=15x-144 | | 3(x+15)=5x20 | | 3(x+15)=5x-4 | | 3(x+15)=5x-30 | | 0.1(x+30)-0.08(x-10)=4.4 |